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Abstract
Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain’s
structure-function relationship, necessitating the close integration of diverse neuroinformatics fields.
Here we extend the open-source simulation software The Virtual Brain to whole mouse brain network modeling
based on individual diffusion Magnetic Resonance Imaging (dMRI)-based or tracer-based detailed mouse connectomes.
We provide practical examples on how to use The Virtual Mouse Brain to simulate brain activity, such as seizure
propagation and the switching behavior of the resting state dynamics in health and disease.
The Virtual Mouse Brain enables theoretically driven experimental planning and ways to test predictions in the
numerous strains of mice available to study brain function in normal and pathological conditions.

Introduction

Dedicated software environments are available to simu-
late detailed neuronal dynamics such as Neuron, Genesis
and MOOSE, which model the complex dendrite geom-
etry, reaction-diffusion processes and receptor distribu-
tions of individual neurons and smaller networks (Hines
and Carnevale, 1997). To simulate larger networks, neu-
ron models are reduced to point neurons (Goodman and
Brette, 2009,Brette and Gerstner, 2005, Izhikevich et al.,
2003). However, scaling up for detailed models beyond an
entire cortical column (Markram, 2012) and a few brain
regions becomes quickly intractable even for networks of
point neurons. Even though neuromorphic computation
offers interesting alternatives for the future (SpiNNaker,
Project, BrainScales, project), macroscopic modeling us-

ing neural population approaches is the only viable whole
brain network modeling strategy nowadays.
The Virtual Brain (TVB) is an open-source simulation
software designed to model whole-brain network dynam-
ics, where the network’s connectivity is based on diffusion
MRI-based individual connectomes or adaptations of more
precise primate connectomes (Leon et al., 2013). TVB
comprises several generative neural population models, de-
fined in physical 3D space and constrained by anatomy, al-
lowing simulating neuroimaging signals (such as magneto-
and electroencephalography (MEG, EEG), or functional
MRI (fMRI)). Whole brain dynamics can also be manip-
ulated in TVB, e.g. via stimulation. TVB provides a
large set of tools for visualization and data analysis (Sanz-
Leon et al., 2015). As such, TVB provides a concep-
tual framework to interpret neuroimaging data, offering
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promising diagnostic and therapeutic perspectives (Jirsa
et al., 2016, Proix et al., 2017). Other groups demon-
strate converging results using similar large-scale brain
modeling approaches (Hutchison et al., 2013,Sinha et al.,
2016). However, very few model predictions can be ex-
perimentally tested in humans for obvious ethical reasons.
Thus, assessing causality and extracting general principles
of brain dynamics in health and disease remain a chal-
lenge.
Rodent research enabled major advances in our under-
standing of brain function and dysfunction, but mostly
at the microscopic scale. The advent of new generations
of MRI machines now gives access to detailed anatom-
ical, structural and functional information at the whole
rodent brain scale (Stafford et al., 2014), thus providing
a formidable opportunity to explore general principles of
whole brain dynamics. Indeed, hypotheses can be tested
and causality can be assessed in the numerous transgenic
mouse lines that have been generated to study neurolog-
ical disorders and to manipulate neuronal networks (e.g.
with optogenetics and pharmacomogenetics). However, a
conceptual framework is needed to interpret neuroimaging
data and generate testable hypotheses. Such framework
would considerably accelerate our understanding of the
mechanisms controlling and affecting whole brain dynam-
ics.

Here we present The Virtual Mouse Brain (TVMB),
the first connectome-based simulation platform to study
large-scale mouse brain dynamics.
TVMB is an extended version of TVB, adapted to the
mouse brain to enable its virtualization. It inherits from
TVB all the already validated simulators to generate brain
network activity, as well as analysis and visualization
tools.
In what follows, we will show how the platform can be
used to virtualize not only individual mouse brains (based
on diffusion MRI connectome) but also to construct very
detailed connectome-based models using tracer data gen-
erated by the Allen Institute for Brain Science (Oh et al.,
2014).
As a worked example to show how the platform can be
used to generate predictions or interpret data, we will sim-
ulate resting state dynamics in a control and “epileptic”
mouse, and seizure propagation. We will also show how to
integrate TVMB in a research project in which theoretical
and experimental approaches benefit from one another.

Materials and methods
All the methods discussed in what follows are implemented
in TVB and freely available to the community. In sup-
plementary materials are contained all the instructions,
materials and codes necessary to reproduce the same re-
sults presented in the paper; in particular Tutotial TVMB
contains all the general information to run TVMB.

The Allen Connectivity Builder
The Allen Connectivity Builder is a pipeline that we have
designed in order to build a complete mouse connectome
based on tracer information.
Specifically we define the link between two brain regions
according to the anterograde tracing information provided
by the Allen Institute of Brain Science and presented in
the work of Oh et al. (2014). In the latter, the axonal
projections from a given region are mapped by inject-
ing in adult male C57Bl/6J mice the recombinant adeno-
associated virus, which expresses the EGFP anterograde
tracer. The tracer migration signal is detected with a
serial two-photon tomography system. This approach is
repeated systematically in order to collect the informa-
tion on the tracer migration from several injection sites
in the right hemisphere to target regions in both ipsilat-
eral and contralateral hemispheres; for each injection sites
several experiments are run and distinct measures are ac-
complished. The Allen Institute provides its data through
an internet-accessible interface, namely the Allen Software
Development Kit (Allen SDK), from which TVB, through
the Allen Connectivity Builder interface, is able to ob-
tain a volumetric atlas as well as the raw experimental
information necessary to build complete mouse brain con-
nectomes. The platform allows to chose the main charac-
teristics of the connectome; specifically the user can set:

1. the resolution of the grid volume in which the data
are registered (25 µm, 50 µm, 100 µm).

2. The definition of the connection strength between
source region i and target region j. Specifically the
connection strength can be defined as:

– The detected projection density (the number of
detected pixels in the target region normalized
on the total number of pixels belonging to that
region).
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– The detected projection energy (the intensity
of detected pixels in the target region normal-
ized on the total number of pixels belonging to
that region).

– The ratio between the projection density, de-
fined as explained above, and the injection den-
sity of the source region (the number of infected
pixels in the source region normalized on the to-
tal number of pixels belonging to that region).

It is possible to choose the characteristics of the brain
areas to be included in the parcellation using the two fol-
lowing criteria:

3. Brain areas where at least one injection has infected
more than a given threshold of voxels. This kind of
selection ensures that only the data with a certain
level of experimental relevance are included in the
connectome (Oh et al., 2014).

4. Only brain areas that have a volume greater than a
given threshold can be included.

The pipeline, once downloaded the raw data from the
Allen dataset, cleans the data in order to obtain a set of
experiments in which the injection structures are exactly
the same as the target structures and vice versa; this
step ensures that the connectome will be a square matrix.
Then, the pipeline excludes from the experimental set the
area that do not fulfill the criteria set by the user (mini-
mum volume (3) and minimum number of voxels infected
(4)).
The experiments of the Allen Institute consider source
regions always located in the right hemisphere, thus we
build a complete structural connectivity matrix, taking
the mirror image of the right hemisphere to build the left
one. Therefore, if we divide the SC matrix in four blocks
R-R, R-L, L-R and L-L (clockwise order starting from
upper left), we will have the symmetries R-R = L-L and
R-L = L-R. This assumption is justified by the fact that
the mouse brain shows a high degree of lateral symmetry
(Calabrese et al., 2015).
The connection strength between a given region and an-
other one is averaged across all the experiments that use
as source and target regions those particular brain areas.
The Allen Connectivity Builder approximates the length
of the tracts as the Euclidean distance between the centers
of the brain regions; the latter are calculated using the

volume built from the Allen SDK.
Finally the Allen Connectivity Builder create a region
volume mapping, i.e. a 3D matrix which represents the
volume of the mouse brain, by modifying the annotation
volume downloaded from the Allen SDK. In particular
the volume is built so that the entries of the 3D volume
matrix range from -1 (background) to N-1, where N is
the total number of areas in the connectivity: entries in
the volume equal to i − 1 label the brain region whose
incoming and outgoing connections are organized in the
i-th row and i-th column of the connectivity matrix.

The volumes and the connectivities used in the present
work have a resolution of 100 µm and each connection
strength is defined as the ratio between projection den-
sity and injection density. The areas included in the par-
cellation have a volume greater than 2 mm3 and they
have more than 50 voxels infected in at least one injection
experiment. The connectome obtained is in Connectiv-
ity.zip folder (Supplementary materials); the instruction
to obtain it through the TVB GUI and the Jupiter in-
terface are respectively in TVMB_tutotial.pdf and Cre-
ate_connectome_Allen.ipynb.

Resting state dynamics

Brain model

The mean activity of each brain region, composing the
mouse brain network, is described by the reduced Wong
Wang model (Wong and Wang, 2006). In this ap-
proach the dynamics of a brain region is given by the
whole dynamics of excitatory and inhibitory popula-
tions of leaky integrate-and-fire neurons interconnected
via NMDA synapses. In this work we take into account
this model with a further reduction performed in Deco et
al. (2013): the dynamics of the output synaptic NMDA
gating variable S of a local brain area i is strictly bound to
the collective firing rate Hi. The resulting model is given
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by the following coupled equations:

dSi(t)

dt
= −Si

τs
+ (1− Si)γHi + σηi(t) (1)

Hi =
axi − b

1− exp(−d(axi − b))
(2)

xi = wJNSi + JNG
∑
j

CijSj + I0 (3)

where xi is the synaptic input to the i-th region. γ
is a kinetic parameter fixed to 0.641, τs is the NMDA
decay time constant and its value is 100 ms; a, b and d
are the parameters of the input and output function H
and are respectively equal to 270 nC−1, 108 Hz, 0.154
s. JN = 0.2609 nA is an intensity scale for the synaptic
input current. w is the local excitatory recurrence and
I0 is the external input current. The value of the local
excitatory recurrence, w, and the external input current,
I0, are set respectively to 0.3 nA and 1 in order to enrich
the non-linearity of the dynamics of each brain region;
this has an impact on the global network by introducing
attractors that are not in trivial relation with the anatom-
ical connectivity, as predicted in the study of Hansen et
al. (2015); we refer to this model as the enhanced non-
linearity Mean-Field Model (eMFM). The implementation
of the eMFM in a brain network offers the chance to study
the non-stationary features of the functional connectivity
patterns.
G is the coupling strength i.e. a scalar parameter which
scales all the connection strengths Cij without altering the
global topology of the network. The value of G together
with the value of the noise amplitude σ of the normally
distributed stochastic variable ηi, are tuned resoectively
to 0.096 and 5.1 · 10−3 in order to initialized in the opti-
mal regime to simulate the resting state activity, i.e. the
regime where the system explores different states (Deco
et al., 2011,Deco and Jirsa, 2012,Hansen et al., 2015).

Integration scheme and BOLD signals

Model equations are numerically solved using the Euler
integration method with a fixed integration step of 0.1
ms.
Simulated BOLD signal is obtained by converting the
simulated neural activity using the Balloon-Windkessel
method (Friston et al., 2000) using the default value im-

plemented in The Virtual Brain (Sanz-Leon et al., 2015).
The BOLD time-series are down-sampled to 2 s and 20min
total length.

Functional connections

Functional connections in the simulated time-series are
explored from both spatial and temporal point of views
using, respectively, the functional connectivity (FC) and
the functional connectivity dynamics (FCD).
The ij -th element of the FC matrix is calculated as the
Pearson correlation between the BOLD signal of the brain
region i and of the brain region j.
To estimate the FCD, the entire BOLD time-series is di-
vided in time windows of a fixed length (3 min) and with
an overlap of 176 s; the data points within each window
centered at the time ti were used to calculate FC(ti).
The ij -th element of the FCD matrix is calculated as the
Pearson correlation between the upper triangular part of
the FC(ti) matrix arranged as a vector and the upper
triangular part of the FC(tj) matrix arranged as a vector.
In order to observe signal correlations at frequency greater
than the typical one of the BOLD signals, the sliding win-
dow length is fixed to 3 min, since, as demonstrated by
Leonardi and Van De Ville (2015), the non-spurious corre-
lations in the FCD are limited by high-pass filtering of the
signals with a cut-off equal to the inverse of the window
length.
The FCD matrix allows identifying the epochs of stable
FC configurations as blocks of elevated inter-FC(t) corre-
lation; these blocks are organized around the diagonal of
the FCD matrix (Hansen et al., 2015).

FCD segmentation: Spectral Embedding
In order to identify the epochs of stable FC configurations,
we used the spectral embedding method, that permits to
group together the nodes of the FCD, i.e. the different
time windows, in clusters.

The spectral embedding is a general cluster technique
founded on the possibility to map the nodes of the network
in the Euclidean space such that the Euclidean distance
between the nodes in the space corresponds with the dis-
tance between the nodes in the network.
In order to implement this idea, it is necessary to define
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the notion of distance between nodes in a network; this is
made introducing the concept of the commute distance cij
between the nodes i and j that is defined as the expected
number of steps in a random walk starting to travel from
node i to node j, and back (Von Luxburg, 2007).
To mathematically define cij is necessary to introduce
some quantity. Let us consider a graph that has an adja-
cency matrix W , i.e. a matrix whose element wij is the
weight of the link between node i and j, that in our case
is the FCD matrix; it is possible to define the laplacian of
the graph as:

L = D −W, where D =


∑
j w1,j

. . . ∑
j wN,j

 .

(4)
Let us denote with |ei〉 the eigenvector i of the Lapla-

cian; if the matrix U is the matrix whose columns are
the eigenvectors of L, and Λ the diagonal matrix with the
eigenvalues λi on the diagonal, thus it is possible to de-
compose the Laplacian as: L = UΛUT .
The generalized inverse of the Laplacian is defined as
L† = UΛ†UT , where Λ† is the diagonal matrix with on
the diagonal 1/λi when λi is different from zero, otherwise
zero. Thanks to L† it is possible to express the commute
distance between node i and j as:

cij = vol(V ) 〈ei − ej |L† |ei − ej〉 , with vol(V ) = (
N∑
i

N∑
j

wij).

(5)
The variable |zi〉 maps the vertex vi in the Euclidean

space (zi ∈ <N ) such that the Euclidean distance between
node i and j is equal to the commute distance cij of the
nodes in the graph if and only if:

c2ij = vol(V )||zi−zj ||2 ⇒ 〈ei − ej |UΛ†UT |ei − ej〉 = 〈zi − zj |zi − zj〉 ,
(6)

from which it follows that 〈zi| corresponds to the i−th
row of the matrix U

√
Λ†.

In Figure 1-1 (Supplementary materials) the nodes of the
FCD are plotted in the Euclidean space <3 mapping only
the first two components of 〈zi|.

Functional hubs
The functional connectivity matrix of each epoch defines a

functional network; for each functional network, we iden-
tify the hub regions with an approach analogous to the
one used in graph theory for defining the eigenvector cen-
trality of a network node (Newman, 2008).
Let us define the functional centrality φ(i) of a brain region
i as the sum of the functional centralities of the neighbor-
ing brain regions weighted on the functional connection
strength fcij :

φ(i) =
1

λ

N∑
j=1

fcijφ
(j) (7)

where λ is a constant. Defining the vector
−→
φ as the column

vector whose components are the functional centrality of
each network region, we can rewrite the previous equation
in matrix form:

−→
φ =

1

λ
FC
−→
φ . (8)

It is simple to notice that
−→
φ is the eigenvector of the func-

tional connectivity matrix associated with the eigenvalue
λ. Since the FC is a real symmetric matrix (thus diago-
nalizable), we can decompose it as:

FC =ΦΛΦT =

=
[−→
φ1 · · ·

−→
φN

]λ1 . . .
λN



−→
φ1
T

...
−→
φN

T

 =

=
N∑
i=1

λi
−→
φi
−→
φi
T .

(9)

It follows that the magnitude of the eigenvalue gives a
measure of the role of the corresponding eigenvector in re-
producing the original matrix.
Taking into account all these observations, we identify
the functional hub regions of the mouse brain as the re-
gions with the largest eigenvector components, in absolute
value, associated with the three largest eigenvalues of the
FC matrix.
The code to run resting state simulation are code 1-2 and
code 2-1 (Supplementary materials).
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Modelling altered connectomes in pathological
contexts

TVB allows manipulating the structural connectivity by
selectively changing the strength of the connections be-
tween brain areas in order to mimic structural lesions.
Using this tool, we have simulated mouse brain dynam-
ics mimicking some aspects of the anatomical reorgani-
zation found in mesial temporal lobe epilepsy: the neu-
ronal connection lost in hippocampal regions, in particu-
lar fields CA1 and CA3 (Esclapez et al., 1999). In order
to reproduce this feature in silico, we have removed all
the in-coming and out-coming connections of fields CA1
and CA3 of the hippocampus and then scaled all the con-
nection strengths by a constant factor, so that the total
weights of the modified SC is equal to the one of the origi-
nal matrix. We simulated the resting state BOLD activity
and we calculated the FCD matrix as described in the pre-
vious sections.
The code to run resting state simulation in pathological
condition is code 3-1 (Supplementary materials).

Epileptic spread in silico

The epileptic network node model

The Epileptor (Jirsa et al., 2014) is a model describing
the onset (through a saddle-node bifurcation), the time
course and the offset (through a homoclinic bifurcation)
of seizures with 5 state variables that operate at 3 dif-
ferent time scales. The variable that guides the neural
population through the bifurcations is the slow permittiv-
ity variable, z, which operates at the slowest time scale.
Ensemble 1, comprising the variables x1 and y1, describes
the fast discharges registered during ictal states and sta-
ble state observed during interictal states; it operates at
the fastest timescale. Finally ensemble 2 (x2, y2) operates
at the intermediate time scale and accounts for spike-and-
wave events. The interaction between the variables of the
system is the following: ensemble 1, trough the function
g(x1), excites ensemble 2, which in turn inhibits ensem-
ble 1 through f1(x1, x2); both the ensembles are coupled
to the slow variable, and the first ensemble acts directly
on z. Proix et al. (2014) propose a permittivity coupling
between brain areas via a linear difference coupling func-
tion that links the fast subsystems with the slow variable
z with the weights given by the distance cij .

The full model equations read:

ẋ1,i =y1,i − f1(x1,i, x2,i)− zi + I1

ẏ1,i =1− 5(x1,i)
2 − y1,i

żi =



r(4(x1,i − x0,i)− zi − 0.1z7i ) +Ks

∑
j

cij(x1j − x1i),

if zi < 0

r(4(x1,i − x0,i)− zi) +Ks

∑
j

cij(x1j − x1i),

if zi ≥ 0

ẋ2,i =− y2,i + x2,i − (x2,i)
3 + I2 + 0.002 · g(x1,i)

− 0.3(zi − 3.5)

ẏ2,i =
1

τ
(−y2,i + f2(x2,i)) ,

(10)

where:

f1(x1,i, x2,i) =

{
3x21,i − x31,i if x1,i < 0

(0.6(zi − 4)2 − x2,i)x1,i if x1,i ≥ 0

(11)

f2(x1,i, x2,i) =

{
0 if x2,i < −0.25

6(x2,i + 0.25) if x2,i ≥ −0.25
(12)

g(x1,i) =

∫ t

t0

e−γ(t−τ)x1,i(τ)dτ (13)

with I1 = 3.1, I2 = 0.45, τ = 10, γ = 0.01; the permittiv-
ity coupling term Ks is fixed to -60.
The degree of epileptogenicity x0 of a brain region i is a
parameter that establishes if the region generates seizures
autonomously.

Integration scheme and epileptogenicity zone

The epileptogenic zones in the model are nodes of the
network that are implemented in the simulation with an
epileptogenicity value, x0, so that, for those nodes, the
transition between the pre-ictal and the ictal state occurs
spontaneously (Proix et al., 2014). An isolated brain area
with x0 ≤ 2.06 is epileptogenic, otherwise the area is in
its equilibrium state and it can generate seizures only if
an external stimulus pushes it through the transition and
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makes it fall in the propagation zone (Proix et al., 2014).
In the simulated mouse brain, the classification of brain
areas in epileptogenic and propagation zone follows the
experimental results of the work of Toyoda et al. (2013)
in which the authors, using recording electrodes, eval-
uate the seizures propagation in rats with spontaneous
seizures. The authors observe that the earliest seizure ac-
tivity is recorded most frequently within the hippocampal
formation and then spreads, in chronological order, in the
subiculum, the entorhinal cortex, the olfactory cortex, the
neocortex and the striatum; in 7 over 10 rats analyzed in
the paper the epileptogenic region is likely identified in
either hemisphere. Accordingly we set as epileptogenic,
x0 = −1.9 the left hippocampal regions (field CA1, field
CA3 and dentate gyrus) and we set all other regions as
propagation zones, x0 = −2.1.
The differential equations of the model are integrated with
the Heun stochastic method with an integration step equal
to 0.04 ms; we use additive white Gaussian noise in the
fast variables (x2 and y2) with mean zero and variance
0.0025. The signals are down-sampled to 1 ms. We set
the pre-expression monitor in order to keep track of the
local field potential, defined in the Epileptor as −x1 + x2,
as well as the slow permittivity value z.
We define the time at which seizure initiates in a large
brain region, as for example the olfactory cortex, as the
mean of the seizure onset time of all the network nodes
composing that region; in order to evaluate the chronolog-
ical order of areas recruitment we define the seizure onset
latency of a region as the difference between the time at
which the seizure initiates in that region and the time at
which the seizure has started in the epileptogenic zone, i.e.
the hippocampal regions.
The code to simulate epileptic activity in mouse brain is
code 4-1 (Supplementary materials).

Results

Virtualizing the mouse brain

Tracer-based connectome

In order to exploit present (and future) high-resolution
structural information of the Allen Institute, we designed
the Allen Connectivity Builder, a pipeline, which uploads
their raw data and processes it in order to create a con-

nectome and its brain volume representation. The user
chooses four sets of parameters: the resolution of the trac-
ing data (i); the way the connection strengths are calcu-
lated (ii); and the criteria used to include or not a given
injected region based on its volume (iii) and its experimen-
tal significance (iv). The pipeline then computes automat-
ically the averaged connection strength between any two
regions. Since injections were only performed in the right
hemisphere and since the mouse brain shows a high degree
of lateral symmetry (Calabrese et al., 2015), the pipeline
uses the mirror image to build the left hemisphere. If time
delays are considered as an important variable to simulate
whole brain activity, the length of each axonal tract be-
comes a key parameter. The Allen Connectivity Builder
approximates the length of the tracts as the Euclidean
distance between the centers of two regions. Finally, the
pipeline automatically builds the brain volume using the
same parcellation as used to build the connectome. TVMB
includes a region volume mapping visualizer to display the
brain volume as sections and the results of the computa-
tions in the brain sections.
An example of a structural connectivity matrix obtained
through the Allen connectivity builder is shown in figure
1a, and the corresponding volume sections in figure 1d.

Diffusion MRI-based connectome

TVMB can also make use of user-based diffusion MRI
data, enabling the virtualization of individual mouse
brains. In order to use the analysis tools and the visu-
alizer above, the brain volume should be uploaded in nifti
format with the same parcellation as the connectome.
As an example, we have used here the high-resolution
open-source mouse connectome of Calabrese et al. (2015)
(figure 2a) which we have embedded in the Allen vol-
ume (figure 2d). In the general case, the user needs to
upload the following files: (1) a weight matrix, i.e. a
square matrix whose rows and columns label the areas
in the parcellation and whose entry (i, j) represents the
values of the connection strength between region i and
region j; (2) a file containing the labels of the brain re-
gions; and (3) the list of Cartesian triplets that spec-
ify the spatial location of each region (Sanz-Leon et al.,
2015). As exhaustively explained in the TVB documenta-
tion (http://docs.thevirtualbrain.org/index.html),
it is possible to provide additional information as the

7

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/123406doi: bioRxiv preprint first posted online Apr. 3, 2017; 

http://dx.doi.org/10.1101/123406
http://creativecommons.org/licenses/by/4.0/


lengths of the tracts connecting the brain areas, or a file
containing a vector providing a way of distinguishing cor-
tical from subcortical regions, or the volumes where the
connectome is embedded in nifti format etc.

Simulated brain activity
Once a virtual brain is constructed, the TVB environ-
ment generates a large-scale brain network equation (Jirsa,
2009) offering multiple ways to produce electrophysiologi-
cal and neuroimaging signals, and analyze their dynamics.
We present three illustrative examples on how mouse brain
network simulations can be accomplished. The scripts and
the data necessary to reproduce all the simulations and re-
sults presented here are in Supplementary materials.

Resting state activity in the “healthy” brain

Since recent studies highlighted the importance of study-
ing Functional Connectivity Dynamics (FCD) (Allen
et al., 2012, Hansen et al., 2015) and the functional hubs
of rodents brain (Mechling et al., 2014,Liska et al., 2015)
during resting state activity, we introduce an analyzer
able to calculate the FCD and to extract the functional
hubs (details of the algorithms in methods section).

We focus on the non-stationary nature of the fMRI
functional connectivity (FC) in resting state observed
both in humans (Allen et al., 2012, Chang and Glover,
2010) and in rodents (Keilholz et al., 2013, Liang et al.,
2015). Thanks to the simulator tool of TVB we simulate
the resting state activity using the reduced Wong Wang
model (Wong and Wang, 2006) in the dynamical regime
studied by Hansen et al. (2015). The model differs from
previous resting state models (Deco and Jirsa, 2012, Deco
et al., 2013) by having a richer dynamical repertoire for
each brain region, which results in a greater number of
attractors for the global system.

The BOLD signals and the corresponding FCD matrix
are shown in figure 1b, and 1c respectively. The blocks
around the diagonal of the FCD matrix correspond to time
intervals during which the FC(t)s are strongly correlated;
following the work of Hansen et al. (2015), we call these
periods, epochs of stability. The FCD analyzer, using the
spectral embedding algorithm, detects three epochs of sta-
bility (black lines in figure 1c) in the FCD matrix. As ex-

plained in the method section, it is possible to identify the
central nodes of the i-th network (i=1,2,3), i.e. the func-
tional hub regions of the i-th epoch, as the nodes linked to
the largest components associated with the largest eigen-
values of the FC matrix computed over the i-th epoch.
The functional hubs identified using this argument by the
FCD analyzer are plotted in the mouse brain sections in
figure 1d. It is possible to notice several analogies be-
tween the simulated functional hubs and the ones previ-
ously reported in literature as the hypothalamus, the vi-
sual and somatosensory cortex (Mechling et al., 2014) and
the agranular insulare area, the cingulate and temporal
cortex (Liska et al., 2015).
Brain activity can be simulated also in individual virtual
mouse brain built from fMRI diffusion data as explained
before. As an example, we uploaded the detailed diffusion
MRI connectome from Calabrese et al. (2015) and simu-
lated subsequent resting state activity of its BOLD signals
(figure 2).

Resting state activity in epilepsy

TVMB can be used to assess the functional consequence of
the anatomical reorganization that takes place in most, if
not all, neurological disorders. Temporal Lobe Epilepsy is
a prototypical example of neurological disorder with well-
described anatomical alterations (Esclapez et al., 1999,
Chen and Buckmaster, 2005) and functional reorganiza-
tions (Centeno and Carmichael, 2014).
Using the tracer-based connectome described above, we
removed the connections from the hippocampal CA3 and
CA1 regions known to be lost in some forms of medial
temporal lobe epilepsy. The simulated BOLD and the
corresponding FCD are in shown in figure 3.
The comparison between the activity of the “healthy” and
“epileptic” brain at the level of a single region, figure 1b
and 3a respectively, does not provide any particular in-
sight. However the differences in brain activity between
the two conditions are revealed at the network level when
computing the FCD (figure 3b). The functional connec-
tions that emerge in the “epileptic” brain are not correlated
in time resulting in a suppression of the switching behav-
ior of the FCD, as compared to the control connectome
(figure 1c). As a result the functional hubs are modified.
Since there is no switching, only hubs of global FC can be
identified (figure 3c).
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Seizure propagation

TVB also contains numerous models to generate EEG-like
activity, including the Epileptor to simulate seizure gene-
sis and propagation (Jirsa et al., 2014, Proix et al., 2014).
As an experimental reference, we used the electrophysio-
logical recordings performed by Toyoda et al. (2013) in a
rat model of temporal lobe epilepsy. Based on the latter
results, we used the left hippocampal regions as epilepto-
genic zones, and analyzed how and where seizures propa-
gated in silico.
The results of the simulation are shown in figure 4. Each
region is characterized by a specific time of seizure onset.
The chronological order of the different areas recruited
during seizure propagation is shown in figure 4b and 4c.
The brain areas in abscissa in figure 4b are sorted accord-
ing to the seizure onset latency rank found by Toyoda et
al. (2013) in rats. Despite the difference in species (rat
versus mouse), there is a remarkable analogy with experi-
mental results, suggesting that the structural connectome
(and the time delays it imposes) plays a key role in the
spatiotemporal pattern of seizure propagation as already
reported in humans (Jirsa et al., 2016, Proix et al., 2017).

Interpreting and planning experiments
with TVMB

Interpreting experimental data with TVMB

Physiological (e.g. normal aging) and pathological pro-
cesses (e.g. neurological disorders) are associated with
both structural (connectome) and functional (resting state
networks) alterations. A central issue in neuroscience re-
search is to understand how much structural alterations
can account for functional ones. At present, both ob-
servations remain at the correlation level. In the case
of aging, DTI and rsfMRI can be obtained at different
times in a given animal (Figure 5). A virtual brain can
be constructed at each time step, to simulate whole brain
dynamics. Following data fitting, alterations found specif-
ically at time t + 1 experimentally can be introduced in
the connectome measured at time t. If the resulting in
silico rsfMRI reproduces that experimentally measured at
time t+ 1, it is possible to conclude that these structural
alterations are sufficient to explain the changes in whole
brain dynamics.

Planning experiments with TVMB

We present two of the many possibilities offered by the
platform. Brain surgery and stimulation are two common
procedures used to treat patients, e.g. for epilepsy and
Parkinson’s disease. After virtualizing a mouse model of
these pathologies at a specific stage of their evolution, re-
searchers can perform neurosurgery in silico and predict
the efficacy of the procedure. Likewise, in silico stimula-
tion of brain regions is straightforward in TVMB, which
allows studying how resting state dynamics can be ma-
nipulated (Spiegler et al., 2016). The predictions thus
generated can then be tested experimentally in vivo in
the same mouse that was used to make them. Novel pre-
clinical strategies may thus be tested in mice, before their
possible clinical transfer.
Many brain functions require dynamical interactions and
information transfer between numerous brain regions. The
contribution of a given region is thus difficult to evaluate a
priori. Using a parameteric study in TVMB, it is possible
to predict which regions play a key role by successively ac-
tivating and inactivating them. Then, one can plan the ex-
periment, choosing the appropriate transgenic mouse line
in order to control the identified region with optogenetics
or pharmacogenetics. Such a priori knowledge provided
by the in silico approach would considerably accelerate
research.

Discussion

TVMB opens a new set of research possibilities: it allows
researchers, from different fields, to easily build speci-
fic/individual mouse brains (using various resolutions,
weighting definitions and parcellations), to simulate differ-
ent dynamical behaviors (using diverse neural population
models, numerical integration schemes, and simulated
neuroimaging modalities) and finally to analyze the re-
sults.

However, while TVMB is a highly generic framework,
its underlying mathematical framework and simulation
techniques make standard assumptions, among which the
two most essential are that (1) the average activity of
large populations of neurons is a meaningful quantifica-
tion of the phenomena to be modeled and (2) the statistics
of white matter fibers sufficiently describes how regions
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interact. Both resting state dynamics and seizure propa-
gation, as demonstrated above, satisfy these assumptions.
On the other hand, for example, fine grained spike timing
effects would not well described within TVMB’s mathe-
matical framework.

The wide range of possibility offered by rodent ex-
periments will easily accommodate the validation of the
parameterization required by all the modeling approaches
contained in the software. This validation sometimes
can proceed at a qualitative level for phenomenological
models, such as the Kuramoto model of synchronization,
but many detailed biophysical models allow for quanti-
tive comparison with empirical data, such as spike timing
(Brette and Gerstner, 2005). At the whole brain level,
TVMB allows for direct comparison with common modal-
ities such as EEG, MEG and fMRI, or common statistics
thereupon such as functional connectivity; these compar-
isons allow for the characterization of parameter values in
terms of their fit with empirical data and thus biological
validity. The experimentally observed functional charac-
teristics of the mouse brain (e.g. a functional hub during
resting state or the effects of specific connections removal)
can be easily imposed in the output of the virtual system,
and through data fitting algorithms, it will be possible
to retrieve the parameters of the model that give rise to
that particular functional behavior. In this way, closing
the circle, the reliability of the new predictions accom-
plished with the fitted parameter set will be improved;
additionally the knowledge of the key features responsible
of the different functional behavior allows to control and
manipulate the system in silico, and, going a step further,
also in vivo.
TVMB thus offers not only a conceptual framework to
interpret neuroimaging data but, combined with experi-
mental approaches, it also offers an operative framework
to investigate the causal links between structure and func-
tion in the brain.

TVMB is an actively developed software, with new ver-
sions released regularly with new features. Among those
targeted specifically for the mouse, the module which
builds connectivities from the public Allen data will con-
tinue to evolve as the available dataset becomes richer. For
example, when cortical layer annotations become avail-
able, it will be possible to construct mouse connectivities

in which the cortical layers are distinct, allowing for ex-
ample manipulations of inter-layer interactions. As dMRI
protocols and tractography techniques become more es-
tablished for rodent datasets, TVMB has potential to
include modules which automate, with visual inspection
across each step, the generation of connectomes for indi-
vidual rodent data, directly from the DICOM slices pro-
vided by the acquisition equipment.
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Figure 1: (a) We used the Allen Connectivity Builder to build the structural connectivity matrix. The color map
represents the connections strengths with a base-ten logarithmic scale. The resolution of the grid is 100 µm; the
weights of the matrices are defined as the ratio between the projection and the injection density; all the areas in the
parcellation have at least one injection experiment that has infected more than 50 voxels in those areas; the matrix
contains only regions with a volume greater than 2 mm3.
(b) Simulated resting state BOLD time-series using the connectome built in (a), and the eMFM to model the dynamics
of each brain area.
(c) FCD matrix obtained from the time-series. The three black segments (I, II and III) correspond to epochs of
stability of the FCD identified with the spectral embedding technique.
(d) Functional hubs detected in silico mapped on brain sections using the brain region volume visualizer. Images in
the same row represent the plotting of the eigenvectors components, in absolute value, of the FC belonging to the same
epoch. Images organized in different columns refer to eigenvectors belonging to different eigenvalues of the matrices.
The scale used allows highlighting only the brain area associated to component of the eigenvector greater than the half
of the maximum component. Such scale permits to efficiently visualize the relative difference between eigenvectors.
According to our definition (see method section), the areas with warm colors are the hub regions of the brain network
defined by the FC matrices calculated over the relative epoch; the importance of each hub region is proportional to
the corresponding eigenvalue.
The instructions and the codes to obtain the results in figure are respectively in Tutorial 1-1 and code 1-1, code 1-2
(Supplementary materials). 13
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Figure 2: (a) Connectivity matrix obtained from Calabrese et al. (2015).
(b) Simulated resting state BOLD time-series using the connectome shown in (a), and the eMFM to model the dy-
namics of each brain area.
(c) FCD matrix obtained from the time-series. The black segment identifies the epoch of stability of the FCD identified
with the spectral embedding technique.
(d) Functional hubs detected in silico mapped in mouse brain sections using the brain region volume visualizer, as in
figure 1c.
The instructions and the codes to obtain the results in figure are respectively in Tutorial 1-1 and code 2-1 (Supple-
mentary materials).
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Figure 3: Figures (a) and (b) represent respectively the BOLD signals and the corresponding FCD matrix obtained
by simulating the mouse brain in which some links are removed to mimic epilepsy conditions.
(c) Functional hubs detected in the epileptic mouse brain after removing links as seen in some forms of epilepsy. The
hubs displayed here are extracted from the FC matrix calculated over all the simulated BOLD signals (20 minutes), i.e.
the global FC, since the FCD simulated in the epileptic mouse brain does not present evident sign of non-stationarity
and consequently the epoch of stability can not be detected.
The instructions and the codes to obtain the results in figure are respectively in Tutorial 1-1 and code 3-1 (Supple-
mentary materials).
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Figure 4: Simulating epileptiform activity in the mouse brain.
(a) The time series show simulated seizure genesis and propagation (direct current recording) in silico.
(b) The graph shows the propagation pattern. Time 0 corresponds to seizure onset in the left hippocampus. On the
x axis, regions are ordered as they are progressively recruited in Toyoda et al. (2013). The y axis shows the average
time of recruitment in arbitrary units of these regions after triggering a seizure in the left hippocampus in silico. Note
the good match between simulated and experimental data. Extensive names of the region composing each group are
illustrated in table 4-1 (Supplementary materials).
(c) The time distance from seizure onset in the left hippocampus is given by the colorscale and plotted in the brain
volume for each region.
The instructions and the codes to obtain the results in figure are respectively in Tutorial 1-1 and code 4-1 (Supple-
mentary materials).
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Figure 5: The cartoon illustrates how it is possible to use TVMB to do predictions when studying aging. A mouse can
be scanned at different times t extracting anatomical and functional brain information. The anatomical information
can be processed in order to obtain a connectome that can be used in TVMB to create a virtual mouse at each time step.
The functional experimental information can be compared with the predictions done in TVMB, investigating how, for
example, anatomical modifications during aging affect whole brain dynamics. Multiple other testable predictions can
be done. For example, explore in silico which types of neurones can be stimulated (or silenced) to activate specific
resting state networks. The predictions can then be tested in ad hoc transgenic mice with optogenetics.
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